

Isatuximab plus lenalidomide and dexamethasone with weekly bortezomib versus isatuximab plus lenalidomide and dexamethasone in newly diagnosed transplant ineligible Multiple Myeloma. The BENEFIT (IFM 2020-05) study

Xavier Leleu¹ and Cyrille Hulin², Lambert Jerome³, Arthur Bobin¹, Aurore Perrot⁴, Lionel Karlin⁵, Roussel Murielle⁶, Lydia Montes⁷, Brieuc Cherel⁸, Thomas Chalopin⁹, Borhane Slama¹⁰, Marie-Lorraine Chretien¹¹, Kamel Laribi¹², Claire Dingremont¹³, Christophe Roul¹⁴, Clara Mariette¹⁵, Sophie Rigaudeau¹⁶, Claire Calmettes¹⁷, Mamoun Dib¹⁸, Mourad Tiab¹⁹, Laure Vincent²⁰, Jacques Delaunay²¹, Alberto Santagostino²², Margaret Macro²³, Emmanuelle Bourgeois²⁴, Frederique Orsini-Piocelle²⁵, Julie Gay²⁶, Benoit Bareau²⁷, Noemie Bigot³, François Vergez²⁸, Pierre Lebreton²⁹, Reza Tabrizi³⁰, Agathe Waultier-Rascalou³¹, Laurent Frenzel³², Ronan Le Calloch³³, Emilie Chalayer³⁴, Thorsten Braun³⁵, Florence Lachenal³⁶, Selim Corm³⁷, Celine Kennel³⁸, Rakiba Belkhir³⁹, Jean-Sebastien Bladé⁴⁰, Bertrand Joly⁴¹, Valentine Richez-Olivier⁴², Helene Demarquette⁴³, Daniela Robu-Cretu⁴⁴, Laurent Garderet ⁴⁵, Muriel Newinger-Porte⁴⁶, Amine Kasmi⁴⁷, Bruno Royer⁴⁸, Olivier Decaux⁴⁹, Bertrand Arnulf⁴⁸, Karim Belhadj⁵⁰, Cyrille Touzeau⁵¹, Mohamad Mohty⁵², Salomon Manier⁵³, Philippe Moreau⁵¹, Hervé Avet-Loiseau²⁸, Jill Corre²⁸, Thierry Facon⁵³

Honoraria and consultant fees from.

Abbvie	GSK
Amgen	Janssen
AstraZeneca	Pfizer
BMS	Roche
Gilead/Kite	Takeda
	Sanofi

Background

- IMROZ study sought to determine the added value of CD38 targeting immunotherapy using twice weekly VRd SOC¹, however, Dara-Rd has also become a new SOC in various countries including France^{2–4}
- It was shown that in NDMM Ti patients, including in the context of the combination of bortezomib plus lenalidomide and dexamethasone, a weekly schedule demonstrated less peripheral neuropathy and has been adopted in clinical practice^{5–7}
- To further enhance the safety profile of treatments for Ti patients, a fixed duration of dexamethasone was evaluated and proved beneficial in various studies^{5,8}
- MRD negativity rate has become an important endpoint in MM (ODAC approval in April 24)⁹
- To improve current standard of care, we evaluated the added value of weekly bortezomib (V) to Isatuximab plus lenalidomide and dexamethasone (Isa-VRd versus Isa-Rd). We report the results of the primary endpoint analysis of BENEFIT/IFM2020-05 (NCT04751877), the first academic French Phase 3 study investigating the efficacy and safety of Isa-VRd vs Isa-Rd in Ti patients with NDMM

d, dexamethasone; Dara, daratumumab; Isa, isatuximab; NDMM, newly diagnosed multiple myeloma; ODAC, Oncologic Drugs Advisory Committee; R, lenalidomide; SOC, Standard of care; Ti, transplant ineligible; V, bortezomib.

^{1.} Clinical Trials.gov; NCT03319667; 2. Facon T, et al. *N Engl J Med* 2019;380:2104–15; 3. Dimopoulos MA, et al. *Ann Oncol* 2021;32:309–22; 4. Rajkumar SV, Kumar S. *Blood Cancer J* 2020;10:94; 5. O'Donnell EK, et al. *Br J Haematol* 2018;182:222–30; 6. Mateos MV, et al. *Haematologica* 2014;99:1114–22; 7. Hoff F, et al. *Blood Cancer J* 2024;14:52; 8. Durie BGM, et al. *Lancet* 2017;289:519–27; 9. U.S. Food & Drug Administration. Last updated April 17, 2024. Accessed April 22, 2024. https://www.fda.gov/advisory-committee-calendar/april-12-2024-meeting-oncologic-drugs-advisory-committee-meeting-announcement-04122024.

Key highlights

- BENEFIT is the first academic Phase 3 study of an anti-CD38 mAb in combination with VRd in patients with Ti NDMM
- It is also the first Phase 3 study to readout with MRD as a primary endpoint in Ti NDMM
- In this presentation we will show that Isa-VRd led to:
 - A statistically significant improvement in MRD at 12 and 18 months
 - Deep response rates, including MRD at 10⁻⁶
 - Statistically significant improvement in MRD- CR rate
 - A safety profile consistent with that of each agent
- This study shows for the first time Isa-Rd results in NDMM Ti patients

Study design: Isa-VRd vs Isa-Rd in Ti NDMM

(MRD at 10⁻⁵)

M18 Primary objective

¹Cycle 1 only. CR, complete response; Cy, cycle; d, dexamethasone; D, day; Isa, isatuximab; M, month; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; NGS, next generation sequencing; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; R, lenalidomide; SPM, second primary malignancy; Ti, transplant-ineligible; V, bortezomib; VGPR, very good partial response.

Patient disposition

Screened: N=307 (Enrolled: n=270)

A higher percentage of patients are still on treatment in the Isa-VRd arm

d, dexamethasone; Isa, isatuximab; ITT, intent-to-treat; R, lenalidomide; V, bortezomib.

Baseline characteristics

ITT population	lsa-VRd (n=135)	lsa-Rd (n=135)
Age, median (range), years	73.2 (71–76)	73.6 (71–76)
Age by category, years, n (%)		
<70	28 (21)	25 (19)
[70–75]	65 (48)	62 (46)
≥75	42 (31) 48 (36	
ECOG PS, n (%)		
0 or 1	125 (93)	119 (88)
>1	10 (7)	16 (12)
eGFR <60 mL/min/1.73 m² (MDRD), n (%)	19 (14)	28 (21)

ITT population	lsa-VRd (n=135)	Isa-Rd (n=135)
ISS stage at baseline		
Stage I + II	114 (84)	108 (80)
Stage III	21 (16)	27 (20)
R-ISS stage at baseline, n (%)		
Stage I	32 (24)	35 (26)
Stage II	92 (68)	89 (66)
Stage III	11 (8)	11 (8)

Patient characteristics were balanced in both arms

*Cytogenetic risk was assessed according to Perrot et al. for study analysis.¹ d, dexamethasone; ECOG PS, Eastern Cooperative Oncology Group Performance Scale; eGFR, estimated glomerular filtration rate; Isa, isatuximab; ITT, intent-to-treat; MDRD, modification of diet in renal disease; R, lenalidomide; R-ISS, Revised International Staging System; V, bortezomib. 1. Perrot A, et al. *J Clin Oncol* 2019;37:1657–65.

Baseline characteristics

ITT population	lsa-VRd (n=135)	Isa-Rd (n=135)
Deletion 17p		
Deletion 17p sup 20%	9 (6)	10 (8)
Deletion 17p sup 50%	5 (4)	8 (6)
TP53 mutation	5 (4)	6 (5)
t(11;14)+	31 (23)	26 (20)
t(4;14)+	11 (8)	10 (8)
High-risk	5 (4)	2 (2)
Non high-risk	6 (4)	8 (6)
t(14;16)+	3 (2)	5 (4)
t(14;20)+	1 (1)	1 (1)
Gain/amplification 1q	32 (24)	35 (27)
Del(1p32)	11 (8)	13 (10)
Del(1p32) ^{del/wt}	11 (8)	12 (9)
Del(1p32) ^{del/del}	0	1 (1)

ITT population	lsa-VRd (n=135)	lsa-Rd (n=135)
Cytogenetic risk at baseline – no. (%) ⁺		
Standard	76 (60)	68 (53)
Intermediate	41 (32)	48 (37)
High	10 (8)	13 (10)
IMS HR definition – no. (%)*		
High	24 (18)	33 (24)
Non-high	111 (82)	102 (76)
Deletion 17p	8 (6%)	10 (7%)
TP53 mutation	5 (4%)	6 (4%)
Del(1p32) ^{del/del}	0	1 (1%)
t(4;14) or t(14;16) or t(14;20) +gain/amp 1q or del(1p32) ^{del/wt}	10 (7%)	14 (10%)
Gain/amp 1q +del(1p32) ^{del/wt}	5 (4%)	6 (4%)

Patient HR characteristics were balanced in both arms

*Cytologic analysis of a spin from positive fraction, and only samples with ≥ 70% PCs after sorting were obtained at diagnosis and shipped overnight to a central laboratory. Upon receipt, plasma cells (PCs) were isolated using CD138+ MAC-Sorting (Miltenyi Biotec, Paris, France). Post-sorting purity was checked by cytologic analysis of a spin from positive fraction, and only samples with ≥ 70% PCs after sorting were kept for the analysis. The mean purity was 94%. PCs were analyzed by NGS using NextSeq 500 (Illumina). For each positive del(17p) assessed by NGS, an additional FISH analysis was performed to assess the percentage of positive plasma cells. NGS sequencing was performed using a panel of specific probes targeting regions of interest, as previously described^{29,30}.

*IMS HR definition was assessed according to xxxxxxx for study analysis ref.

FISH, fluorescence in situ hybridization; HR, High-risk; ISS, International Staging System; ITT, intention-to-treat; no., number; R-ISS, Revised International Staging System; yr, years.

Primary endpoint: MRD-* rate at 18 months – ITT population

Isa-VRd resulted in deep response rates, with a significant improvement in the MRD at 12 and 18 months, and at 10⁻⁵ and 10⁻⁶ in the ITT population

*MRD was assessed on the basis of IMWG recommendations.

CI, confidence interval; Isa, isatuximab; IT, intent-to-treat; MRD-, minimal residual disease negativity; NGS, next generation sequencing; OR, odd ratio; R, lenalidomide; V, bortezomib

1. Kumar S, et al. Lancet Oncol 2016;17:e328-e346.

MRD-*-CR rate at 18 months - ITT population

Isa-VRd resulted in a significant improvement in the MRD– CR rate at 12 and 18 months, and at 10⁻⁵ and 10⁻⁶ in the ITT population

*MRD was assessed on the basis of IMWG recommendations.¹

Cl, confidence interval; CR, complete response; Isa, isatuximab; ITT, intent-to-treat; MRD-, minimal residual disease negativity; NGS, next generation sequencing; OR, odd ratio; R, lenalidomide; V, bortezomib. 1. Kumar S, et al. *Lancet Oncol* 2016;17:e328–e346.

MRD subgroup analyses

Subset		lsa-VRd Events/Pts	lsa-Rd Events/Pts		OR (95% CI)	P-value for interaction
Sex	Male Female	37/74 34/61	16/71 19/64		3.44 (1.67–7.06) 2.98 (1.43–6.23)	0.79
Age	≤ 75 yr > 75 yr	48/93 23/42	22/87 13/48		3.15 (1.68–5.93) 3.26 (1.35–7.86)	0.95
Cytogenetic profile (LP FISH)	LP HR- LP HR+	62/119 9/16	31/124 4/11 -		3.26 (1.9–5.62) 2.25 (0.47–10.88)	0.66
Cytogenetic profile (NGS)	Standard risk High risk	58/107 10/22	29/112 4/15 -		3.39 (1.92–5.98) 2.29 (0.55–9.47)	0.62
ISS	 	27/50 33/64 11/21	15/51 13/57 7/27		2.82 (1.24–6.4) 3.6 (1.64–7.93) 3.14 (0.93–10.58)	0.91
eGFR (MRDR Formula)	<60 ≥60	8/19 63/116	8/28 - 27/107		1.82 (0.53–6.19) 3.52 (1.99–6.22)	0.34
	All patients	71/135	35/125		3.17 (1.9–5.29)	
	Favours Isa-Rd Odds ratio Favours Isa-VRd					

A consistent MRD benefit was observed with Isa-VRd vs Isa-Rd across most subgroups, including difficult-to-treat populations with negative prognostic factors

Cl, confidence interval; d, dexamethasone; eGFR, estimated glomerular filtration rate; FISH, fluorescent in situ hybridation; Isa, isatuximab; ISS, international staging system; MRD, minimal residual disease; MDRD, modification of diet in renal disease; NGS, next generation sequencing; OR, odd ratio; R, lenalidomide; V, bortezomib.

Depth of response* at 18 months and the first occurrence of a CR - ITT Population

≥CR rate 58% vs. 31%, OR (95% Cl): 2.97 (2–5), p<0.0001

≥VGPR[†] HR: 1.65 (95% CI, 1.27 to 2.14, p=0.0002)

> VGPR, median (95% Cl) Isa-VRd: 2.1 (95%Cl, 1.9–2.9) months Isa-Rd: 3.7 (95%Cl, 3–4.9) months

Isa-VRd resulted in deep response rates, particularly ≥CR rate at 18 months, and a shorter time to the first occurrence of a confirmed response ≥VGPR in the ITT population

*Response was assessed on the basis of IMWG recommendations¹; [†]Distribution of time to ≥VGPR were compared between arm using a Cox cause specific proportional Hazard model to account for competing risk of death or progressive disease with treatment as explanatory variable and adjusting for randomization stratification factors. CI, confidence interval; CR, complete response; d, dexamethasone; HR, hazard ratio; Isa, isatuximab; ITT, intent-to-treat; ORR, overall response rate; PR, partial response; R, lenalidomide; V, bortezomib; VGPR, very good partial response

Survival analysis-IRC assessment in ITT population

Estimated 24 months PFS 85.2% (95%Cl 79.2–91.7) for Isa-VRd 80.0% (95% Cl 73.3–87.4) for Isa-Rd

Estimated 24 months OS 91.1% (95%Cl 86.1–96.4) for Isa-VRd 91.5% (95%Cl 86.5–96.8) for Isa-Rd

At a median follow-up of 23.5 months, survival is still immature

d, dexamethasone; Isa, isatuximab; IRC, independent review committee; ITT, intent-to-treat; CI, confidence interval; OS, overall survival; PFS, progression-free survival; R, lenalidomide; V, bortezomib.

Exposure to study treatments (Safety population*)

Exposure parameter	lsa-VRd (n=135)	Isa-Rd (n=135)			
Isatuximab					
Duration of treatment, months	15.9 [15.6–16.3]	15.8 [15.6–16.1]			
Relative dose intensity [†] , %	96.1 [90.9–99.9]	95.8 [91–99]			
Bortezomib					
Duration of treatment, months	15.7 [13.4;16.3]	-			
Relative dose intensity [†] , %	91.6 [81.8;95.6]	-			
Lenalidomide					
Duration of treatment, months	15.9 [15.6–16.3]	15.8 [15.6–16.1]			
Relative dose intensity [†] , %	91.7 [72.5–99.5]	91 [74.3–99]			
Dexamethasone					
Duration of treatment, months	10.2 [10.1–10.6]	10.2 [10.1–10.6]			
Relative dose intensity [†] , %	95.8 [71.9–100]	97.9 [75.5–100]			

Similar relative dose intensity of Isatuximab, lenalidomide, and dexamethasone in both arms

*The safety population included all patients who received at least one dose of study treatment; †Dose intensity was defined as the ratio of total administered dose to total planned dose. d, dexamethasone; Isa, isatuximab; R, lenalidomide; V, bortezomib.

Safety summary (safety population*)

	Isa-VRd	Isa-Rd
TEAE overview, n (%)	(n=135)	(n=135)
Any TEAE	134 (99)	128 (95)
Grade ≥3 TEAEs	93 (69)	91 (67)
Serious TEAEs	46 (34)	47 (35)
Any TEAE leading to definitive treatment discontinuation		
Isatuximab	3 (2)	4 (3)
Lenalidomide	14 (10)	13 (10)
Dexamethasone	14 (10)	7 (5)
Bortezomib	14 (10)	0
Event rate per patient-year [†]		
Any TEAE	12.53	5.57
Grade ≥3 TEAEs	0.96	0.88
Serious TEAEs	0.26	0.28
Any TEAE leading to definitive treatment discontinuation (all treatments)	0.01	0.01

Isa-VRd was well tolerated, and the safety profile remains consistent with the known safety profiles of each agent

*The safety population included all patients who received at least one dose of study treatment; †Calculated as number of patients with an event divided by total patient-years. d, dexamethasone; lsa, isatuximab; R, lenalidomide TEAE, treatment-emergent adverse event; V, bortezomib

Safety summary (Safety population*)

	lsa-VRd (n=135)		Isa-Rd (n=135)			
Event, no. of patients (%)						
	Any Grade	≥Grade 3	Any Grade	≥Grade 3		
Hematologic adverse events						
Neutropenia	77 (57)	53 (40)	82 (61)	61 (45)		
Lymphopenia	53 (39)	44 (33)	38 (28)	33 (24)		
Anemia	30 (22)	13 (10)	27 (20)	7 (5)		
Thrombocytopenia	37 (27)	16 (12)	19 (14)	8 (5)		
Event, no. of patients (%)	Any Grade	≥Grade 2	Any Grade	≥Grade 2		
Nonhematologic adverse ev	vents					
Diarrhea	66 (49)	39 (29)	65 (48)	30 (22)		
Constipation	52 (39)	30 (22)	41 (30)	19 (14)		
Rash	21 (16)	12 (9)	16 (12)	9 (7)		
Asthenia	41 (30)	24 (18)	48 (36)	18 (14)		
Peripheral Oedema	48 (36)	18 (14)	27 (20)	10 (7)		
Muscle spasms	27 (20)	7 (5)	28 (21)	9 (7)		
Psychiatric disorders	33 (24)	22 (16)	32 (24)	17 (13)		
Vascular disorders	36 (27)	21 (15)	34 (25)	23 (17)		

	lsa-\	/Rd	Isa-Rd		
Event, no. of patients (%)	(n=135)		(n=1	35)	
	Any Grade	≥Grade 2	Any Grade	≥Grade 2	
Nonhematologic adverse events (cont'd)					
Eye disorders	20 (15)	10 (7)	19 (14)	12 (8)	
SPMs	6 (4)	6 (4)	6 (4)	6 (4)	
Infections and infestations					
Infection of other types	61 (45)	48 (36)	48 (36)	35 (28)	
Infection of the respiratory system	65 (48)	47 (35)	64 (47)	54 (40)	
Covid-19	55 (41)	34 (24)	59 (44)	31 (23)	
Nervous system disorders					
Peripheral neuropathy	70 (52)	37 (27)*	38 (28)	13 (10) [‡]	
Other	38 (28)	19 (14)	41 (30)	17 (13)	

Isa-VRd was well tolerated, and the safety profile remains consistent with the known safety profiles of each agent

*The safety population included all patients who received at least one dose of study treatment; [†]Four patients had a Grade 3 event in Isa-VRd arm; [‡]One patient had a Grade 3 event in the Isa-Rd. d, dexamethasone; Isa, isatuximab; R, lenalidomide; SPM, second primary malignancies; V, bortezomib.

Conclusions

- BENEFIT is the first academic Phase 3 study of an anti-CD38 mAb in combination with VRd in patients with Ti NDMM
- Isa-VRd resulted in deep response rates vs. Isa-Rd at 18 months, with a statistically significant improvement in the MRD– (NGS, 10⁻⁵) rate (53% vs 26%; P<0.0001)
- Isa-VRd resulted in deep response rates vs. Isa-Rd already at 12 months, including even more stringent 10⁻⁶ threshold MRD– rate vs Isa-Rd at 12 (32% vs 13%) and 18 months (36% vs 23%)
- A consistent MRD benefit was observed with Isa-VRd vs Isa-Rd across most subgroups, including difficult-to-treat patient populations with negative prognostic factors
- Isa-VRd was well tolerated, and the safety profile remains consistent with that of each agent
- Isa-Rd MRD– data are, as expected, comparable to previously reported data with anti-CD38 Rd regimens²
- The study provides evidence that a weekly bortezomib regimen in Isa-VRd can be a very effective and feasible option in NDMM Ti
- The improved efficacy of Isa-VRd vs Isa-Rd, combined with a consistent safety profile, provides an important treatment option for frontline disease control, supporting Isa-VRd as a new SOC for patients with Ti NDMM

d, dexamethasone; CR, complete response; Isa, isatuximab; mAb, monoclonal antibody; MM, multiple myeloma; MRD–, minimal residual disease negativity; NDMM, newly diagnosed multiple myeloma; NGS, next generation sequencing; R, lenalidomide; SOC, Standard of care; Ti, transplant ineligible; V, bortezomib. U.S. Food & Drug Administration. Last updated April 17, 2024. Accessed April 22, 2024. https://www.fda.gov/advisory-committee-calendar/april-12-2024-meeting-oncologic-drugs-advisory-committee-meeting-announcement-04122024; 2. San-Miguel, et al. Blood 2022;139:492–501.

Acknowledgments

¹Hematology, CIC 1082, U1313, CHU, University, Poitiers ² CHU, Bordeaux ³ SBIM, Saint-Louis Hospital, Paris ⁴ University Hospital, iUCT Oncopole, Toulouse ⁵ Hôpital Lyon Sud, Pierre-Benite ⁶Hematology, CHU, Limoges ⁷ Hematology, CHU, Amiens ⁸CH Bretagne Atlantique, Vannes ⁹ Hematology, CHU, Tours ¹⁰ Hospital center, Avignon ¹¹ Hematology, University Hospital, Inserm U1231, University of Burgundy Franche-Comté, Dijon ¹² Hematology, CH, Le Mans ¹³ Internal Medicine, Tarbes-Lourdes Hospital, Tarbes ¹⁴CH La Rochelle ¹⁵ Hematology, CHU, Grenoble ¹⁶CH, Versailles, Hématologie – Le Chesnay ¹⁷ CH, Périqueux ¹⁸ University Hospital, Angers ¹⁹ Hematology, CH Departemental de La Roche-sur-Yon ²⁰ CHU, Montpellier ²¹ Hôpital privé du confluent 2, Nantes ²² Hematology, CH, Troyes ²³ IHBN – CHU. Hematology, Caen ²⁴ GHICL. Lille ²⁵ Hématologie, CH, Annecy Genevois ²⁶ Hematology, CH de la côte basque ²⁷ Hematology, Les Hôpitaux Privés Rennais Cesson Sévigné - Vivalto Santé, Brittany ²⁸ Unit for Genomics in Myeloma, iUCT Oncopole, Toulouse

²⁹ Hematology, CH, Le Havre ³⁰ Hematology, CHI de Mont De Marsan ³¹ Hematology, CHU, Nîmes ³² Hematology, Necker Hospital, Paris ³³ Hematology, CH de Cornouaille, Quimper Concarneau ³⁴ Hematology, CHU, Saint-Etienne ³⁵ Hematology, Avicenne hospital APHP, Bobigny ³⁶ CH Pierre Oudot, Bourgoin-Jallieu ³⁷ Medipole de Savoie, Challes les Eaux ³⁸ CH William Morey, Chalon sur Saône ³⁹ Rheumatology, Hopital Bicetre, AP-HP, Universite Paris Saclay, Paris ⁴⁰ Onco-Hematology Department, HIA Sainte Anne, Toulon ⁴¹CH Sud Francilien. Corbeil Essonnes ⁴² CHU de Nice ⁴³ Hematology, CH, Dunkergue ⁴⁴ Hematology, CH, Lens ⁴⁵ Hopital Pitié Salpetriere, hématologie, APHP, Paris ⁴⁶ Hôpital Emile Muller, Mulhouse ⁴⁷ DRC, CHU, Poitiers ⁴⁸ Hôpital Saint-Louis, Paris ⁴⁹ Hematology, UMR U1236, University Hospital, Rennes ⁵⁰ C.H.U. Henri Mondor ⁵¹ Hématologie, CHU Hotel Dieu, Université, Nantes, France ⁵² Sorbonne University, Saint-Antoine Hôpital (AP-HP), Hematology, UMRs 938, Paris ⁵³ Hematology, University Hospital, Inserm U-S1277 and CNRS UMR9020, Lille

XL and CH, co-first authors

We would like to thank

The participating patients and their caregivers

The IFM team C Louni, G Belot, MO Petillon, MD, S Rollet, G Massart, E Guillaume and L Gibel.

The BENEFIT study project managers of the protocol, Amine Kasmi, Aurelie Gontier, Veronique Ferrand Rigallaud, at the sponsor CHU Poitiers. The sponsor project team, S Noel, C Abonneau, M Stefanini, R Habbachi, A Soman.

The members of the independent data and safety monitoring committee, Pr Jean-Paul Fermand, chair, Pr Nathalie Meuleman (Belgium), Pr Stephanie Ragot (methodologist).

All study investigators and staff who contributed to data collection and analyses

Study funding: Sanofi

Thank you for your attention!